Two Novel Lycopodium Alkaloids from Huperzia serrata

by Chang-Heng Tan, Xiao-Qiang Ma, Guo-Fu Chen, and Da-Yuan Zhu*

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, P.R. China (Tel. +86-21-64311833, ext. 318; fax: +86-21-64370269; e-mail: dyzhu@mail.shcnc.ac.cn)

Huperzine Q (1) and *N*-oxyhuperzine Q (2), two novel irregular fawcettimine-type *Lycopodium* alkaloids were isolated from the CHCl₃ fraction of the basic material of the whole plant of the Chinese medicinal herb *Huperzia serrata*. Their structures were determined as 13-epi-13 β ,16-epoxydihydrofawcettimine (1) and *N*-oxy-13-epi-13 β ,16-epoxydihydrofawcettimine (2) by means of spectroscopic studies and X-ray crystallographic analysis.

Introduction. – *Huperzia serrata* (Thunb.) Trev. (Huperziaceae) is one of the most commonly used traditional Chinese herbal medicines for the treatment of contusion, strain, swelling, and schirophrema [1]. The discovery that huperzine A, a *Lycopodium* alkaloid isolated from this plant, was a potent acetylcholinesterase inhibitor [2] has prompted us reinvestigate the chemical constituents of this plant. As a continuation of our work [3], we re-examined the CHCl₃ extract of the basic materials of dry whole plants (10 kg), and obtained huperzine Q (1) and *N*-oxyhuperzine Q (2), two novel compounds that represent a unique structural type among the *Lycopodium* alkaloids [4]. In the present paper, we report the isolation and structural elucidation of the above compounds.

Results and Discussion. – Huperzine Q (1), showed a positive response with *Dragendorff*'s reagent and was attributed the molecular formula $C_{16}H_{25}NO_2$ based on the HR-EI-MS spectrum. The fragmentation pattern of 1 in the EI-MS is quite different from that of previously reported *Lycopodium* alkaloids [5]. The ¹³C-NMR spectrum displayed 16 sp³-C signals, which were resolved into ten methylene, four methine, and two quaternary C-atoms through DEPT experiments. As signals representing double bonds from the ¹³C-NMR spectrum are lacking, the molecule of 1 must be pentacyclic, one cycle more than common fawcettimine-type *Lycopodium* alkaloids, such as fawcettimine (3) [6]. The ¹H-¹H-COSY and HMQC spectra indicated

the presence of two isolated spin systems (*Fig. 1*). The HMBC spectrum (*Fig. 1*) exhibited the long-range correlations between C(12) and H–C(4), H–C(7), and H–C(11), and between C(13) and H_{exo} –C(16), H_{exo} –C(14), H_a –C(9), and H_a –C(11). Thus, the planar structure of **1**, as shown in *Fig. 1*, was established. The relative configuration of **1** was defined by a NOESY experiment (*Fig. 2*). Significant NOEs were observed between H_{endo} –C(14) and H_{β} –C(5), H_{β} –C(1), and H_{β} –C(3), and H–C(4) and H_a –C(2) and H_a –C(10). Hence, the relative stereochemistry of **1** as shown in *Fig. 2* was proved, and was confirmed by crystal-structure analyses¹). *Fig. 3* shows the ORTEP view of **1**. Huperzine Q, a pentacyclic alkaloid that has reversed D ring and an ether linkage between C(13) and C(16), represents a new structural type among the *Lycopodium* alkaloids.

Compound **2** was isolated as white amorphous powder; the molecular formula was established as $C_{16}H_{25}NO_3$ by HR-EI-MS. In the EI-MS, the fragment peak at m/z 263 was due to the loss of one O-atom and suggested the presence of an N-oxide function; other signals were similar to those of compound **1**. Important differences between the

Fig. 1. ¹H-¹H-COSY and important HMBC correlations of 1

Fig. 2. Significant NOESY correlations of 1

¹) The crystallographic data have been deposited with the *Cambridge Crystallographic Data Centre* as deposition No. CCDC-155176. Copies of data can be obtained, free of charge, on application to the CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: +44(1223)336033; e-mail: deposit@ccdc.ac.uk).

Fig. 3. ORTEP View of 1

Table. ¹³C- (100 MHz) and ¹H- (400 MHz) NMR Data of **1** and **2** (in CDCl₃, δ in ppm, J in Hz)

Position	¹ H-NMR		¹³ C-NMR	
	1	2	1	2
1α	54.06 (t)	72.20 (t)	3.02 (dt, J = 15.2, 1.9)	3.62 (br. $d, J = 14.4$)
1β	-	-	3.12 (ddd, J = 15.2, 12.8, 2.8)	3.33 (br. $t, J = 14.4$)
2α	29.71 (t)	26.11(t)	1.84 ^a)	2.08 ^a)
2β	-	-	1.63 ^a)	1.87 ^a)
3α	31.47(t)	28.26(t)	2.19 ^a)	2.29 ^a)
3β	-	-	1.69 ^a)	1.58 ^a)
4	54.16 (d)	53.64(d)	1.64 ^a)	1.56 ^a)
5	80.01(d)	78.44(d)	3.95 (ddd, J = 10.0, 6.7, 5.5)	4.00 (ddd, J = 9.8, 6.6, 5.6)
6α	38.27(t)	37.71(t)	1.81 ^a)	1.77 (dd, J = 11.1, 6.6)
6β	-	-	1.69 ^a)	1.67 ^a)
7	40.41(d)	43.36(d)	1.82 ^a)	2.02 ^a)
8endo	37.58(t)	37.18(t)	1.81 ^a)	1.88 ^a)
8exo	-	-	1.24(m)	1.31 (br. $t, J = 13.6$)
9α	47.86 (t)	66.10(t)	2.73 (dd, J = 14.0, 5.4)	3.40 (dd, J = 13.6, 4.0)
9β	-	-	3.45 (td, J = 14.0, 4.2)	3.76 (td, J = 13.6, 3.8)
10α	22.68 (t)21.07 (t)	1.83 ^a)	2.08 ^a)	
10β	-		1.44 (br. $d, J = 13.5$)	1.65 ^a)
11α	37.82(t)	35.28(t)	1.48 (br. $d, J = 12.8$)	1.43 (br. $d, J = 12.8$)
11β	-	-	2.19 (td, J = 12.8, 4.2)	2.19 (td, J = 12.8, 3.1)
12	52.29(s)	53.16(s)	_	_
13	96.53 (s)	106.74(s)	_	_
14endo	40.90(d)	33.39(t)	1.87 (dd, J = 11.2, 5.0)	2.87 (ddd, J = 9.8, 3.2, 1.3)
14exo	-	-	2.06 (d, J = 11.2)	1.68 (d, J = 9.8)
15	36.58(d)	36.66(d)	2.49(q, J = 4.1)	2.54 (br. s)
16endo	70.70(t)	73.29(t)	4.00 (ddd, J = 7.5, 4.9, 1.5)	4.14 (ddd, J = 7.2, 3.6, 2.4)
16exo	-	-	3.74(d, J = 7.5)	3.85 (d, J = 7.2)
^a) Overlar	ping signals.			

¹³C-NMR spectra (*Table*) of **1** and **2** were three C(N) signals (δ C(9) = 47.86, δ C(1) = 54.06, and δ C(13) = 96.53) of **1** shifted upfield to 66.10, 72.20, and 106.74; respectively, in **2**, and the δ value for C(14) shifted from 40.90 in **1** to 33.39 in **2**. These shifts are consistent with the assignment of **2** as *N*-oxyhuperzine Q: C(9), C(1), and C(13) are deshielded by conduction from *N*-oxide group, and the difference in the results from a C(14) signal results from γ -gauche effect from *N*-oxide group. These results prove that **2** possesses the same configuration as **1**, also consistent with the formulation of **2** as *N*-oxyhuperzine Q.

Experimental Part

General. Column chromatography (CC): silica gel (200–300, 400 mesh' Qingdao Haiyang Chemical Group Co., China). M.p.: Fisher-John, uncorrected. $[\alpha]_D$: P.E. 241 MC polarimeter. IR Spectra: Nicolet Magna-750 FT-IR spectrophotometer, KBr pellets; ν in cm⁻¹. EI-MS: MAT-95 spectrometer; 70 eV; m/z (rel. int. in %). NMR Spectra: Bruker AM-400 instrument, CDCl₃ as solvent with residual CHCl₃ peak (δ (H): 7.26; δ (C): 77.10) as reference; chemical shifts δ in ppm, J in Hz.

Plant Material. Fresh whole plants of *Huperzia serrata* (Thunb) Trev. were collected in Zhejiang Province, China and identified by Dr. *Xiao-Qiang Ma*. Voucher sample (No. 97-63) was deposited in the Herbarium of this institute.

Extraction and Isolation. The air-dried whole plants (10 kg) were powdered and extracted with 1% aq. tartaric acid at r.t. and the pH of the concentrated acidic extract adjusted to 9 with conc. NH_3 soln., then extracted with CHCl₃. The CHCl₃ layer was concentrated to give the CHCl₃ fraction of the total alkaloid extract, which was subjected to silica-gel CC (eluted with solvents of increasing polarity (CHCl₃, CHCl₃/MeOH (50:1, 20:1, 10:1, and 5:1)), and MeOH). Compound **1** (48 mg) was obtained from the CHCl₃/CH₃OH 10:1 fraction, and **2** (13 mg) from CHCl₃/MeOH 5:1, after being purified by repeated silica-gel CC.

Data of **1**: Colorless prisms from Me₂CO. M.p. $192-194^{\circ}$. $[\alpha]_{25}^{25}$: -0.275 (*c* 0.44, CHCl₃). IR: 3415 (OH), 3205, 2938, 1460, 1354, 1336, 1205, 1082, 928, 827. ¹³C- and ¹H-NMR: see *Table*. EI-MS: 263 (100, *M*⁺), 246 (57), 232 (17), 222 (18), 204 (7), 192 (9), 180 (12), 162 (14), 152 (26), 123 (8). HR-EI-MS: 263.1894 (C₁₆H₂₅NO₂; calc.: 263.1886).

X-Ray Crystal-Structure Analysis of **1**. $C_{16}H_{25}NO_2$ (MW: 263.38), Monoclinic $P2_1$ (#4): a = 7.322 (2) Å, b = 12.040 (2) Å, c = 16.067 (3) Å, $\beta = 91.01$ (2)°, V = 1416.1 (4) Å³, Z = 4; $D_{calc} = 1.235$ g·cm⁻³, R = 0.054, $R_W = 0.059$. From a crystal of size $0.20 \times 0.20 \times 0.30$ mm, 2090 reflexions were measured on a *Rigaku AFC7R* diffractometer with Mo-Ka radiation (graphite monochromator $\lambda = 0.71069$ Å) at 273 ± 1 K. The structure was solved by direct methods and expanded by means of *Fourier* techniques. The non-H-atoms were refined anisotropically. H-Atoms were included but not refined. Drawings of the molecule were made with ORTEP.

Data of **2**: Amorphous powder. $[a]_{25}^{25} + 0.06$ (*c* 0.12, CHCl₃). IR: 3415 (OH), 3215 (intermolecular H-bond, N–OH), 2937, 1637 (N=O), 1456, 1348, 1335, 1204, 1094, 1028. ¹³C- and ¹H-NMR: see Table. EI-MS: 279 (20, M^+), 263 (48), 246 (21), 232 (10), 222 (11), 205 (8), 191 (10), 167 (26), 150 (36), 149 (100), 123 (22). HR-EI-MS: 279.1850 (C₁₆H₂₅NO₃; calc.: 279.1834).

This research was supported in part by grants from the National Natural Science Foundation of China (# 39900013 to X. Q. M.).

REFERENCES

- [1] Jiangsu New Medical College, 'The Dictionary of Traditional Chinese Medicine', Shanghai Science and Technology Press 1985, p. 1138.
- [2] a) J. S. Liu, Y. L. Zhu, C. M. Yu, Y. Z. Zhou, Y. Y. Han, F. W. Wu, B. F. Qui, *Can. J. Chem.* 1986, 64, 837;
 b) X. C. Tang, Y. F. Han, X. P. Chen, X. D. Zhu, *Acta Pharmacol. Sin.* 1986, 7, 501.
- [3] a) D. Y. Zhu, S. H. Jiang, M. F. Huang, L. Z. Lin, G. A. Cordell, *Phytochemistry* 1994, 36, 1069; b) D. Y. Zhu, M. F. Huang, B. D. Wang, X. M. Kong, Y. Q. Yang, *Chin. J. Appl. Envion. Biol.* 1996, 2, 352.
- [4] W. A. Ayer, Nat. Prod. Rep. 1991, 8, 455.
- [5] D. B. MacLean, 'The Alkaloids', Vol. 10, Ed. R. F. Manske. Academic Press. New York. 1968, 377.
- [6] Y. Inubishi, T. Harayama, Chem. Pharm. Bull. 1981, 29, 3418.

Received December 17, 2001